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The interpretation of superposition rheology data is still a matter of debate due to lack of understanding of
viscoelastic superposition response on a microscopic level. So far, only phenomenological approaches have
been described, which do not capture the shear induced microstructural deformation, which is responsible for
the viscoelastic behavior to the superimposed flow. Experimentally there are indications that there is a funda-
mental difference between the viscoelastic response to an orthogonally and a parallel superimposed shear flow.
We present theoretical predictions, based on microscopic considerations, for both orthogonal and parallel
viscoelastic response functions for a colloidal system of attractive particles near their gas-liquid critical point.
These predictions extend to values of the stationary shear rate where the system is nonlinearly perturbed, and
are based on considerations on the colloidal particle level. The difference in response to orthogonal and parallel
superimposed shear flow can be understood entirely in terms of microstructural distortion, where the anisotropy
of the microstructure under shear flow conditions is essential. In accordance with experimental observations we
find pronounced negative values for response functions in case of parallel superposition for an intermediate
range of frequencies, provided that microstructure is nonlinearly perturbed by the stationary shear component.
For the critical colloidal systems considered here, the Kramers-Kronig relations for the superimposed response
functions are found to be valid. It is argued, however, that the Kramers-Kronig relations may be violated for
systems where the stationary shear flow induces a considerable amount of new microstructure.
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[. INTRODUCTION coelastic behavior. Although the structure of a microscopic
theory for viscoelastic behavior of colloids has been dis-

Superposition rheology is a tool to investigate the internaFussed by many authors before, we feel that a short expose
dynamics of stationary sheared systems. At present there ahgre is worthwhile, since this paper will be of interest to
a number of phenomenological modgls-3], but no micro- rheologists who are probably not familiar with these issues.

scopic theory exists where response functions are obtainddft€" having defined the flow geometry in Sec. li, the su-
from considerations on the particle levilis the purpose of perposition rheology of attractive spheres near their gas-

this paper to develop a microscopic theory for superpositio liquid critical point, where many-body interactions are essen-

heol Th tem that will b idered | ial, is treated in extenso in Sec. IV. In Sec. IVA some
rheclogy The system that will bé considered 1scancen- introductory remarks on the critical divergence of the viscos-
trated system of attractive, spherical colloids in the vicinity

fth lauid critical point Exolicit it btained ity are given for those rheologists who are not familiar with
of the gas-liquid critical point EXplicit results are obtaine ritical phenomena. Sec. IV B is concerned with the effect of
for the viscoelastic response functions related to a we

h field ) d on( ‘blv st tati Ahear flow on the microstructure of the suspension, Sec. IVC
shear field superimposed on(possibly strong stationary discusses a microscopic expression for the viscoelastic re-

she_ar field. Intere_stln_g phenomena are observed Whe_n thS.?)onse functions, and Sec. IV D contains explicit results and
stationary shear field is strong enough to perturb the micro

. ) . ' ~an interpretation of the difference of response functions for
structure in a nonlinear fashion. To some extent these micr

. i ) S ) harallel and orthogonal superposition. In Sec. V the validity
scopic considerations lead to an intuitive understanding o f the Kramers-Kronig relations for stationary sheared sys-
superimposed response.

. tems is discussed. Section VI contains some concluding

Some of the commonly used phenomenological mOdel%marks
violate the Kramers-Kronig relatiorf4,2]. It will be argued '
that the Kramers-Kronig for the superimposed response || THE BASIC STEPS IN A MICROSCOPIC THEORY
functions are valid for systems in which the stationary shear
flow does not lead to a considerable enhancement of micro- A microscopic theory for viscoelastic behavior consists of
structure. For systems where shear flow leads to a consideiiree steps:
able enhancement of microstructure, the Kramers-Kronig (i) Calculate the probability density functiofPDF) P
might be violated. Such a violation might be found for en-=P(ry, ... ry) of the position coordinates {rj|j
tangled polymer systems, or systems close to the gel transi1,2, . .. N} of the spherical colloidal particles for the sys-
tion. For the near-critical system considered here, howevetem subjected to flow. The PDP obeys the so-called
microstructural distortion is dominant over microstructural Smoluchowski equation, which reafi$—6,

enhancement, and the Kramers-Kronig relations are found to N N

apply. C DS V. [VP+BPV®]-> V..[[-rP
This paper is organized as follows. First of all we outline  dt 0,—2‘1 i"LViP+ APV @] ,—Z‘l ir[T-1iPl,

the basic steps that go into microscopic theories for vis- D
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where hydrodynamic interactions between colloidal particles Since the deviatoric part of the stress in an isotropic sys-
are neglected. Her®), is the single-particle diffusion coef- tem vanishes, we can write the integral in EB8). also as,
ficient, V; is the gradient operator with respectrig and®

is the total interaction energy of the assemblyNoolloidal N(N—1)

particles. Furthermorel” is the velocity gradient tensor, stress TJ drh(r)f(r), (5)
which will be specified in the next section. This is a diffusion

equation that includes direct interactions between the Co”OiwherehEg—l is referred to as the total-correlation func-
dal particles(through the potential), their Brownian mo-  tjon, This function vanishes at infinity. The reason for intro-
tion (second term between the square bragkatsl convec-  qycing the total-correlation function is that it is often easier

tive motion (through the last terin It is a microscopic 15 solve equations for the structure fact®fk), which is
equation of motion since it is formulated on the level of theessentially the Fourier transform bfr)

colloidal particles. The first task is thus to solve this equation
of motion wih approximations that are appropriate for the
particular system under consideration.

(ii) Find the functionf of the position coordinates of the _
colloidal particles, which upon averaging with respect to thevhere p=N/V is the number density of colloidal particles
above-mentioned PDF gives the macroscopic viscoelastic reend withh(k) the Fourier transform offi(r),
sponse functions, or equivalently, the macroscopic stress,
that is,

S(k)=1+ph(k), (6)

ﬁ(k)=f dr h(r) exp{ik-r}. (7)
stress=(f)

The Fourier transform oh(r) is well defined sinceh(r)
EJ drq... f dryf(ry, ... r)P(rg, oo ryst). vanishes at infinity, contrary to the pair-correlation function.
Parseval’s theorem allows one to rewrite the strgjsin
2 terms of a wave-vector integral,

Such a microscopic expression for the stress has been de- N(N—1) L
rived in full generality by Batcheld7]. In Sec. IV C we will stress= —f dk h(k) f(k), (8
give an elementary derivation that applies to near critical v(2m)®
systems.
(iii ) Evaluate the average in E@). Once stepg§) and(ii)  wheref(k) is the Fourier transform of(r). It is therefore
are accomplished, one should then evaluate the int¢Bral generally sufficient to find an expression for ttehear-rate
to find, for example, the shear rate dependence of the visdependentstructure factor in order to evaluate the response
coelastic response functions. In most cases the explicit evalditnctions.
ation relies in part on numerical integration. Another motivation to calculate the structure factor is that
The function in Eq.(2), which upon averaging gives the it is of direct relevance for scattering experiments. The pre-
stress, is generally a sum of functioh@;—r;) of two posi-  dicted shear induced anisotropy and the shear-rate and time
tion coordinates only. For identical colloidal particles we dependence of the structure factor can be verified by means
then have(the summation ranges ovet j), of light scattering experiments.

N
stresyJ’ drq... f drN.E f(ri=rp)P(ry, ... Iyt Mll. THE FLOW FIELD
W=t The stationaryflow field considered here is a simple shear
N(N-1) flow in the x direction with its gradient component in tlye
= —f drlf dr,f(ri—ry)g(ri—r,,t), (3 direction. Thesuperimposed oscillatorghear flow is either
% parallel to the stationary shear flow or orthogonal to it. The
velocity u at a pointr is u(r)=I"-r, with I" the velocity
where V is the volume of the system angl is the pair- gradient tensor. This tensor is equallte=T'y+ I's with T’
correlation function, which is defined as the velocity gradient tensor pertaining to the stationary shear
component of the flow anfl's to the superimposed velocity
g(rl—rz,t)zvzf dry... f AryP(r1ufailas - ). gz\/delent tensor. For the above described stationary flow we

(4)

01 0
This pair-correlation functiom(r,t) is thus proportional to _:lo o o
the probability to find two colloidal particles a distance Fo=v ' ©)
=r,—r, apart. Stegi) is now reduced to finding the shear 0 0O
rate dependent pair-correlation functignNote that by defi-
nition g(r)—1 asr—oo, while for parallel superposition,
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0 1
I'=vyscodwt}| 0 0 O], (10)
0 0O

o

17=f drf(r)h(r), (12

whereh(r) is the total-correlation function anfqr) is an as
yet unknown function of the distanecebetween two colloi-
and for orthogonal superposition, dal particles. At distancessbetween two colloidal particles,
so large that they do not interact with each other any more,
0 0 the total-correlation function vanishes. The development of
. long-range correlations means tlt) goes to zero at large
I's=yscodwt}| 0 0 0F, (11) distances more and more slowly. At the critical point its
010 decay to zero at infinity is not sufficiently rapid anymore to
assure convergence of the integral in E&2). This is the

where the shear flow is in thedirection. Herejy and y, are formal argument why the viscosity diverges at the critical

the shear rates corresponding to the stationary and oscillatoRPiNt (like many other transport coefficieptsHow fast a

component of the flow, respectively. The oscillatory sheaff@nsport coefficient diverges on approach of the critical
oint depends solely on the asymptotic behavior of the cor-

rate v, is assumed small enoug_h to assure a linear Viscoelagésponding phase functiof(r) at large distances. There-
tic response, while the shear-rateof the stationary compo-  fore, for the calculation of the diverging viscosity, only the
nent may perturb the systems microstructure in a ”On“”eaésymptotic behavior of the functidi{r) at large distances is
fashion. . _ of importance. The contribution to the integral in H32)
These forms of the velocity gradient tensors assume th%sulting from integration over short distancesy r less
frequencies are small enough to assure that the penetratigRan a few times the range of the pair-interaction potential
depth is of the order or larger than the gapwidth. We do nogonstitutes the so-called “background viscosity.” The re-
consider surface loading experiments. Microstructural dymaining contribution to the integral, reflecting the develop-
namics of near-critical systems is very slow, due to criticalpent of long-range correlations, is referred to as the
slowing down, which enables one to perform bulk experi-«anomalous part of the viscosity.” The anomalous contribu-
ments at frequencies much larger than typical inverse microon to the viscosity diverges on approach of the critical point
structural relaxation times. while the background viscosity remains well-behaved. Our
interest here is in the anomalous part of the viscoelastic re-

IV. SHEARED SUSPENSIONS OF ATTRACTIVE SPHERES  SPonse functions.
NEAR THEIR GAS-LIQUID CRITICAL POINT

o

- e . . B. Microstructure under shear flow
A gas-to-liquid transition in a monodisperse suspension of

spherical colloidal particles can occur when the pair- Without shear flow the structure factor attains the
interaction potential has a sufficiently strong attractive com-Ornstein-Zernike fornisee, for example Ref$6,8]),
ponent. On approach of the corresponding gas-liquid critical 5
point the range of the effective interaction potential diverges. 1 &

L . ) . Sk = o ——,
This implies that increasingly larger groups of colloidal par- B 1+ (k£)2
ticles interact simultaneously on approach of the critical
point. The range of the effective interaction potential is mea-

. i where 8= 1/kgT, % is a well-behaved, positive constant,
sured by the so-called C(_)rre_latlon IgnghThe @vergence which is related to the Cahn-Hilliard square gradient coeffi-
of the range of the effective interaction potential, and henc

) . ! . ient, and¢ is th rrelation length that measures the dis-
the number of particles that interact simultaneously, glve%e , andg is the correlation leng at measures the dis

. . . - IV€3ance over which colloidal particles still interact with each
rise to divergence of the shear viscosity. Contrary to dilute P

. C . . ther. The correlation length is given by,
suspensions, where two-particle interactions are domlnan?, 9 g y
now many-body interactions are essential.

dIl
=\/2 ) = (14
A. Critical divergence of response functions dp

The fact that close to the critical point many particles _
interact simultaneously, gives rise to a large force necessatyherell is the osmotic pressure apcthe number density of
to break up these interactions in order to make the systeroolloidal particles. Sincedll/dp—0 on approach of the
flow. This implies a large viscosity, which ultimately di- critical point, the correlation length diverges, so that the
verges at the critical point, since there, each colloidal particlestructure factor is infinite for zero wave vectors at the critical
interacts with all other colloidal particles in the system. point. Close to the critical point the structure factor exhibits
Critical divergence resulting from the development ofa strong upswing at small wave vectors leading to strong
long-range correlations can be understood more formally arward scattering of light, giving rise to a strong increase of
follows. As pointed out in Sec. Il, the viscosity can be the turbidity. This phenomenon is referred to as “critical
written as an average as, opalescense.”

(13
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The Smoluchowki equatiofil) can be integrated with re- “critical slowing down.” As a result of critical slowing
spect to the position coordinates, . . .ry to obtain an equa- down the frequency of the superimposed shear flow, where
tion of motion for the total-correlation functioh(r;—r,).  elastic response will be found, shifts to lower values on the
Since we are only interested in the asymptotic behavior aapproach of the critical point.
large distances, and vanishes at infinity, the equation of = The dimensionless form of E¢15) reads,
motion can be linearized with respect tto With an appro-

priate closure relation for the three-particle correlation func- dS(K,7) aS(K,7) 2
tion and employing a gradient expansionhpbne finds after or =[AK1+Ascoq 071K, ] K, —KT1+K]
Fourier transformation the following equation of motion for
the structure factof6,9,10, X{S(K,m)—S*(K)}, (19
aS(k,t) . . aS(k,t) whereK is a dimensionless wave vector,
ot =[ vkt ys Cos{wt}kn]T
2 K=Kk, (19
—2D*"(k)k*{S(k,t) = S*(K)}, (15 : : .
and 7 a dimensionless time,

wherek; is the jth component of the wave-vect&; while

j J P 7= 2D (k=0)& 2= 2D, 85 ¢ “t. 20)

k,=ks for orthogonal superposition arg,=k; for parallel

superposition, that is, . L . : . .
Perp This is the time in units of the time required for a colloidal

particle to diffuse over a distance equal to the correlation

n=1, for | superposition, .
length. Furthermore, the following “dressed Peclet num-

=3, for Lsuperposition. (16 bers” are introduced,
FurthermoreP®'fis a diffusion coefficient which is equal to, - yéH _ yE?
dI 2DoBE  2D°*f(k=0)’
D®(k)=D, = k% |, (17) _ _ (21)
P _ '}’354 7552
NT2DoBE oDt ’
whereD is the single-particle, Stokes-Einstein diffusion co- 0B 2D*f(k=0)

efficient.
Linearization of the equation of motion for the total- and{} is a dimensionless frequen¢gr “a dressed Deborah

correlation functionh amounts to the neglect of terms of number),
order O(h?) with respect to a linear terh g dIl/dp. Very

— 4 2
close to the critical point, wher@ dIl/dp is a very small 0= w§ = wg )
number, such a neglect is no longer allowed. The equation of 2DoB%  2D*f(k=0)
motion (15) is therefore only valid in the mean-field region,
not too close to the critical point. Beyond mean field, veryThe dimensionless numbeds and A; measure the long-
close to the critical point, equations of motion for the struc-wavelength shear induced distortion of the structure factor
ture factor are nonlinear, contrary to §45). Furthermore, resulting from the stationary shear component and the oscil-
Eg. (15) is valid only for wave vector& smaller than about latory component, respectively. The response to the superim-
27/Ry, with Ry the range of the pair-interaction potential, posed shear field is linear when<1 and nonlinear when
since it relates to the asymptotic form of the total-correlation\s> 1. The stationary shear field perturbs the microstructure
function for large distances. only slightly whenx <1 and in a nonlinear fashion when

The first term on the right-hand side of E45) describes >1. A significant phase shift of the structure factor response
the distortion of microstructure due to the shearing motion ofelative to the external field-cogwt} will be found for )
the suspension and the second term describes the equilibriuml, while for Q<1 the viscous response will be almost
restoring diffusion. The relative magnitudes of these twoinstantaneous.
counter balancing terms determine the microstructural fea- Notice that\, A, and), for given y, ys, and w, be-
tures of the system. This competition between convectiogome larger on approach of the critical point because of the
and diffusion will certainly be modified by hydrodynamic increasing correlation lengt. The effect of shear flow is
interactions, but the essential features of the microstructurghys more pronounced closer to the critical point. This is due
under shear flow are captured without considering hydrodytg the increasing sizé of groups of correlated particles on
namic interactions. Inclusion of hydrodynamic interactions iSapproach of the critical point, which larger groups are more
something that remains to be done. _ easily affected by shear flow. Furthermore, due to critical

Note that on approach of the critical point, where sjowing down of dynamics, the typical frequency where the
dll/dp—0, the diffusion coefficient17) becomes small at response of the structure factor will have an out-of-phase
small wave vectors. This slowing down of diffusive motion component with the applied oscillatory field, occurs at
on approach of the critical point is commonly referred to assmaller frequencies.

(22
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Although the equation of motiofil8) can be solved for
large values of\g, where the viscoelastic response is non-
linear, we restrict ourselves here to small valuea of The
general idea is to probe the dynamics of a possible nonlin-
early, stationary sheared system with a minimum effect of
the superimposed flow. The oscillatory solution of E4g)
to linear order in\g, after transients have died away, reads,

A=0
(no shear)

AKp

S(K,7) =) +

-
f d7’'cod Q7' }G3(7—17')
—o FIG. 1. The structure factd®®'® under stationary shear flow as

2 sta . a function ofK; andK, for K;=0 (K; andK, both range from

X[1+G*(r— 1) {S™G(7—7")) —3 to +3). The most left figure is the Ornstein-Zernike equilib-

—SIG(7—7')]lexp{—H(7—7')} (23) rium structure factor. The two other figures are for Peclet numbers
' A=10 and 100, respectively.

where the vecto6 is equal to,
The upper integration limit in Eq26) is equal to+ o when

, , AK;>0, and equal to-~ when\K;<O0.
G(7=7")=[Ky,Ka+ MKy (7= 7"),Ks], (24 A crucial observation is thain directions perpendicular
to the stationary flow direction (where; K0) the stationary
component of the shear flow does not affect the microstruc-
ture, that is,

whereG is its length, and the functioHl in the exponent is
equal to,

H(7— T’)ZJ'T,dT”GZ(T— )1+ G2(r— )] = (1—7') SR(K)=SK), for Ky=0. 28

X[K2(1+K?) + (1+ 2K KAK (7= 7")
As can be seen from Fig. 1, whe®?is plotted for various

+ %(1+2K2+4K§))\2K§(T— 7')? values of\ in the plane wher&K;=0, the structure factor
distortion is highly anisotropic. There is no distortion in di-
+ FKNSK3(r— )3+ ENAKE(r— 7)Y rections wheré, =0, while in the other directions the struc-

ture factor is significantly distorted. This will be important
when discussing the difference between the response to or-
thogonal and parallel superimposed shear flow. Contrary to

Here, K; is the jth component of the dimensionless wave th el i 4 sh feld. th h |
vector (19). Furthermore,S¥(K) is structure factor under . € parallel superimposed shear Tield, the orthogonal super-
mposed shear field acts in part on microstructure that is still

stationary shear flow, without the superimposed oscillaton} ) . , .
flow. From the equation of motiofL8) with =0 and with Intact, that is, unaffected by the stationary shear field. This

the use of Eq(13) for the equilibrium structure factor, one leads to a viscoelastic response tq qrthogonal .ﬂOW. that is
finds that, larger then for parallel flow. This is illustrated in Fig. 2,

where the additional distortioB— S due to the superim-
posed oscillatory flow for orthogondkeft column of figureg

(29

* and parallel (right column superposition is plotted. The
STK) =S*K)| 1+ MK« dX middle column indicates the times during the oscillation at
1 which the structure factor is calculated. All plots refer to cuts
s L2 a2 w2 F(K|X) in reciprocal space wheré,=1 (as will be seen later, di-
XK= K3+ X7J[K5 =X ]exp — veull rections whereK,=0 do not contribute to the stressThe

top two figures are the equilibrium and the stationary sheared
(26) structure factor(for A =10). As can be seen, the distortion
for orthogonal superposition is about a factor of 10 larger
where, than for parallel superposition. The large distortion in case of
orthogonal superposition occurs at wave vectors where the
X stationary structure factor is equal to the equilibrium struc-
F(K|x)=f dY[K?— K§+ Y2 [1+K?— K§+Y2] ture factor(indicated by the thick line in the top-right plot
K2 This large susceptibility of the stationary sheared structure
factor to orthogonal superimposed flow leads to larger vis-
coelastic response functions as compared to parallel super-
imposed flow
Except for the factor cg6)l7'} in Eq. (23), the entire in-
(27)  tegrand is a function of— 7" only. Using that,

=[X—K,][K?=K3|[1+K2=K]]

+ 5 [X3=K3I[1+2K2-2K3]+ § [X>—K3].
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\ FUKNQ) | (¢td)? (= [codQr}]
- : [FO“‘(KD\,Q)}_ MKy fodT{Sin{QT}]G(T)

X[1+G*(1)]X{S™(G(7))
—SMG(m)exp{ —H(7)}. (30

Note that the in- and out-phase functidi§° are the same
for orthogonal and parallel superposition, and are indepen-
dent of the superimposed shear rate this is the reason for
writing the factorA¢K, explicitly in Eq. (29). The factor
~¢7 2 is added to the definition of the functioma™°! to
explicitate the divergence of the structure factors: the func-
tions F™°U are well behaved and independent of the corre-
lation length¢ at the critical point since the structure factors
diverge like £2.

Note that even in the linear-response regime with respect
to the stationary component of the flow, wherdas small,
there are many relaxation times. For smallwe have, ac-
cording to Eq.(25), H(7)=rK?(1+K?), so that every dif-
ferent value ofK corresponds to a different relaxation time.
In fact these are the different diffusion modes. For stronger
stationary flows, whera > 1, the additional contributions to
H in Eq. (25) are related to coupling between convective and
diffusive modes. Even for the simplest colloidal system a
Maxwell relaxation model, with a single relaxation time, is
generally wrong. Only when the structure is dominated by a
nonzero single wave vectok,, say, there is a dominant
) _ single relaxation time-1/D(k=k,) kﬁn, with D the relevant

FIG. 2. The structure factor under superimposed oscillatoryir sjon coefficient. Otherwise there are many relaxation
shear ﬂow.ln the I§1,K3) p!aqe withK,=1. The top left flgqre is times ~ 1/D (k) K2,
the Ornstein-Zernike equilibrium structure factor, the top right fig- Also note that the equation of motia@8) is singularly

ure is the structure factor under stationary shear flow with a Peclet - .
numberh =10. The thick line in the latter figure indicates the un- perturbed by both the stationary and oscillatory components

distorted structure &, =0. In these figures bot; andK; range of the shear _ﬂOW' W'th a mathem_atlcal boundary layer
from — 3 to + 3. The left column of figures i§— St for orthogo- ~ aroundkK =0 with a width that varies like the square root of
nal superimposed flow for various times. These times are indicatet€ Peclet numbers. Within the boundary layer, a linearized
in the middle column by the black dot. Bokh, andK range from ~ solution of the equation of motion is a bad approximation,
—1 to +1. The right column of figures are for parallel flow, where €ven for small values of the Peclet numbers. It makes sense,

K, andK 5 range from—2 to +2. Note that the scale for parallel however, to use the linearized solution to calculate linear
flow is about factor of 10 smaller than for orthogonal flow, as Viscoelastic response functions, since in ensemble averages,
indicated next to the two top figures in the columns. Hexg, represented by wave-vector integrals, the boundary layer

T Equilibrium
(no shear)

Orthogonal
A . Parallel

=0.1,0=0.1, and¢ 1d=0.01. does not contribute for small Peclet numbers, as its extent
vanishes with vanishing Peclet numbers.
cod QY =cogQ (7' — )+ 7t =cog QA Y cog QO (7— 7')} _ The micro_s;tructure does_ not instantaneously adapt to the
imposed oscillatory shear fietd co§Q 7} when the Deborah
+si{Q7}sifQ(7—7")}, number(} is sufficiently large. This can be seen in Fig. 3,

where the structure factof23) for parallel superimposed

allows one to rewrite Eq(23) explicitly as an in-phase and ﬂow, no_rmalized to its maximum value, is plotted as a func-
out-phase contribution to the oscillatory structure factor,  tion of time for the wave vectoK = (1/y3,14/3,14/3), for
A=0.1 (a linear perturbed microstructure by the stationary

component of the floyy A = 10 (a nonlinear perturbed micro-
structure and A = 1000 (a strongly nonlinear perturbed mi-
_ cstal AsKn in i i i
S(K,7)=S"(K)+ ———[F"(K|\,Q)cod O 7} crostructure for various values of). The external field is
~1d)? given by the dashed curve. In the top row figufedere
=0.1) it is seen that an out-of-phase response becomes evi-
dent for A=1. When\ exceeds 1, so that the stationary
shear flow perturbs the microstructure in a nonlinear fashion,
whered is the core diameter of the colloidal particles andthe microstructure ‘“stiffens,” and an out-of-phase compo-
(renaming the new integration variabale 7' simply as7), nent becomes evident only at frequencies much larger than

+ FOU(K|N,Q)sinfQ 7} ], (29

021406-6
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- AS/AS,

1

FIG. 3. The additional distor-
tion —AS=—(S—-S") of the
structure factor, resulting from
parallel superimposed shear flow
(normalized to its maximum
valug for the wave vectorK
=(1/{3,11/3,11/3) as a function
of time for stationary Peclet num-
bers\=0.1 (top row figureg, \
=10 (middle row figureg andA
=1000 (lower two rows of fig-
ure9, for various frequencies.
Here,\,=0.1 and¢~1d=0.01.

Qt

1. This is especially evident from the lower two rows of becomes evident, leading to a nonzero value of the imagi-
figures, where\ =1000. “Stiffening of the microstructure” nary part of the shear viscosity.

is due to the fact that larger stationary shear rates destroy This effect of “stiffening of microstructure” is less pro-
microstructures with increasingly larger diffusive relaxationnounced for orthogonal superposition, since here part of the
rates. The microstructure, of which the corresponding diffu-microstructure that is probed by the superimposed flow is the
sive relaxation time is sufficiently slow, is no longer presentequilibrium structure[see Eq.(28)]. For parallel superim-
under stationary shear flow. This will, for example, result inposed flow this unaffected, equilibrium structure will remain
an imaginary contribution to the shear viscosity that is al-intact, but will be affected by the orthogonally superimposed
most 0 over a frequency range that increases with increasinigpw.

stationary shear rates. Once the frequency is substantially For values of the superimposed Peclet numbgtarger
larger than\, an out-of-phase response of the microstructurghan 1, one finds that the structure factor response is no
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longer a(possibly shifted cosine: higher-order Fourier com- which is the microscopic expression we were after, provided
ponents now come into play, giving rise to higher-order, thatAVJ and Fh can be expressed in terms of functions that
nonlinear viscoelastic response functions. These are not cogepend only on the position coordinates of the colloidal par-

sidered in the present paper. ticles, which then defines the functidrin Eq. (5).
The additional velocity consists of two parts. First of all,
C. Microscopic expression for the viscoelastic each partiCle is carried by the additional fluid flow, which
response functions velocity is equal tol's-ry, with I's the part of the velocity

- . . gradient tensor that relates to the superimposed flow field
To W|th||j linear response with respect to the supenm—%See Egs(10) and (11)]. Secondly, the flow field's-r is
posed, oscnlatgry component of the shear flow, the stres cattered by the cores of other particles. This scattered flow
a(t) can be written as, field affects particlg in its motion and changes its velocity
by C; :T's, whereC/ is a third rank tensor, which depends
a(t)= »&S[n’(w)coqwt}-k 7"(w)sinfwt}], (31 on all the position coordinates of the colloidal particles. The
symbol “:” is a double contraction, where thieh compo-
which defines the the viscoelastic response functighand  nent of the vectoC; :I's is equal toEﬁ'm= 1(C)inm(T's)mn-
7. This is a valid definition when transients have died away,The proportionality of this contribution witlh'y is the result
so that the externally imposed flow field is sinusoidally vary-of the linearity of the creeping flow equations, which de-
ing with time. The in-phase response functigh is related  scribe the low Reynolds number hydrodynamics in suspen-
to the in-phase pafE™ of the structure factor in E(30),  sions. Hence,
while the out-phase response functigfi is related to the
out-phase parf°",
A microscopic expression for the stress tensor for colloi-
dal systems has been derived by Batchgldr Only the
contrl)llautlon to the stress that arées from mteraguons pewherel's is the velocity gradient tensor in Eq4.0) and(11)
tween the colloidal particles is of interest here, since onlywithout the prefactoryscogwt}. For the calculation of the
these interactions become long ranged on approach of tHgomalous part of the viscoelastic response functions it is
critical point. The other terms in Batchelor’s expression con-sufficient to use the asymptotic form of the “disturbance
tribute only to the well-behaved background viscosity. Antensor”Cj’ for large separations of colloidal particles, as was
alternative, elementary derivation of a microscopic expresexplained in Sec. IV A. This asymptotic form is just the sum
sion for the anomalous contribution to the stress proceeds ag pair contributions,

follows. The dissipated and stored enetdyper unit volume
and unit time, due to the superimposed shear field, is equal

N
to, Cj =2, C(ry), (36)

AVS= ycodwt}[ T +C/ T, (35)

U= v.2cod ot'[ 7' (w)cod ot) + 7" (w)sinfot}]. (32 whererj;=r;—r;, and the summation ranges ovetj. C is
vs codetil 7' (w)codwt}+ ' (@)sinfwt}]. (32 the disturbance tensor for just two particles, without the in-

tervening effects of other particles. As it will turn out, the

stress depends only on the divergefﬁ:e[C:fs]. The lead-
ing asymptotic form for large distances of this divergence is
found by solving the two-particle creeping flow equations
(with stick boundary conditiond6,11],

On the other hant is proportional to the additional velocity
AVS that colloidal particlg attains as a result of the super-
|mposed field, multiplied by the forclf'eh that the fluid exerts
on that particle(the superscript KB” stands for “hydrody-
namic”), summed over all particles in the system,

6

IR, (37)

. v -[C(R)-f]=7—5(3
=3 3, AV, 39 " T 21R

<IH

whereR=R/R anda is the core radius of the colloidal par-
whereV is the volume of the systenN the number of col- ticles.
loidal particles, and the brackets...) denote averaging The hydrodynamic forcé}1 follows from the approximate
with respect to the probability density functiéRDF) of the  force balance on the Brownian time scale. As a result of the
position coordinates of the colloidal particles. Equating thelarge viscous friction of the core of the colloidal particles
two expression$32) and(33) one obtains, with the solvent, their momentum coordinates relax to equi-
librium with the solvent in a very short-time interval. The
Brownian time scale is larger than this momentum relaxation

ys’coqwt}[ 7' (w)cowt} + 7'(w)sin{ wt}] time. As a result, the total force on each colloidal particle is
very small in comparison to each of the remaining forces on
-3 (AVS-FM) (34) the Brownian time scale. There are three remaining forces:

“ i

the hydrodynamic forcd", the potential interaction force
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—V,;®, with ® the total potential energy of the assembly of here is that they more clearly display the difference between
colloidal particles, and the Brownian force kgTV;In{P}, parallel and orthogonal superposition. The relative structure
with P the probability density function of the position coor- factor distortion is different for both cases, libe functions
dinates of all the colloidal particles. These forces add up zer&'"°"! are the same for parallel and orthogonal superposi-

on the Brownian time scale, and hence, tion. The only difference between orthogonal and parallel
superposition is the factd(ﬁ in the wave vector integral in
F'=V, &+ kgTV,In{P}. 3 E9.(40.

Since the structure factors are known, these expressions
gan be evaluated explicitly. Integrations must be done nu-

In this way the hydrodynamic force is expressed in terms o _
merically.

functions of the position coordinates of the colloidal par-
ticles.
The anomalous part of the viscoelastic response functions D- Explicit results for the viscoelastic response functions
is found from the microscopic expressif@¥) together with Since the functiong ™" are well-behaved at the critical
Egs. (35 and(38) to be equal to, point, by construction, and the cutoff functidfx) tends to
unity whenx—0, the microscopic expressiqd0) predicts
' K. To2C 2nt0 [ codwt) that the viscoelastic response functions diverge like the cor-
n — L_S“’f t[ J J' dR[h(R) relation length. This has been verified experimentally in case
7 T s 0 sinffwt} | Jr>d of response to a stationary shear flow in R&2]. We there-
st _ fore plot response functions multiplied ky d, where the
—h*(R)]V&-[C(R):Tq], (39 scaling results in a well-behaved function at the critical

— ) . ) . point. Furthermore we define the dimensionless response
wherep=N/V is the colloidal particle number density and fynctions,

C, is a positive constant, which is related to the short-range
behavior of the equilibrium correlation function. The average
in the above result is with respect ko- hs®® with hs@ the N'(h €. £-1d)= 17 42
total-correlation function of the stationary sheared system, (A 2,8 )=g% (42)
instead of jush, because in experiments only the oscillatory
stress resulting from the superimposed flow is measured. Thgnd similarly forN”. The scaled response functions are plot-
stress at zero superimposed shear nate 0 is subtracted ted in Fig. 4 against the frequency for various values of the
from the actual measured stress, which leads to subtractiosiationary Peclet numbex, and for ¢ *d=0.01, both for
of h®®from the actual total-correlation function in E@9). parallel and orthogonal superposition. The response func-
Applying Parseval’s theorerfsee Eq.(8)], and the defi- tions for the otherwise quiescent systéwith A =0) is vir-
nition (6) of the structure factor, Eq39) can be written as, tually equal to the those with=0.1, and are therefore not
plotted. The storage and loss mod@i'=Q N” and G”
, _1 ) =QN' are plotted in Fig. 5.
7 (A ,£77d) _ —C f dKK2K,f (K& 1d) As can be seen, the response functions are not affected by
7 (N, Q,& 1) no(g—ld) 2 the stationary component of the shear flow for frequencies
_ Q>10\, approximately. Sufficiently fast diffusive modes
F(KIN, Q) are not affected by the stationary shear flow. Only the low-
FOUCKIN,Q) )’

!

(40) frequency part of the spectrum is affected on applying the

stationary shear flow. At these low frequenciis,is essen-

where 7, is the shear viscosity of the solvei@, is a posi- tially constant, which plateau value decreases with increas-
tive constantd is the diameter of the colloidal particles, and ing X. Also, for these low frequencids” is almost 0 in the
the functionf is a “cutoff function,” equal to, case of orthogonal superposition, while for parallel superpo-
sition N” becomes negative. In the case of orthogonal super-
position, N” is only slightly negative, almost within the
range of numerical accuracy. As far as we know, the first

5 (= sinz experimental observation of such negative values of response
+120)sinx]/(16x°) — 1_6Xf dZT' (41)  functions has been reported for polymer solutions by Laufer

X etal.[13].
Notice that the stress can be written as

f(x)=[(5x°—10x3— 120x)cosx + (5x*— 30x>

This function is equal to 1 fox=0, and is essentially 0 for
x>4, thus limiting the integration range in E@0) to small

wave vectors, within the range of validity for which expres- a(t)= 'ysf(a,)cos{wt_ o()}, (43)
sions for the structure factor have been given in the previous
section. where a positive phase angle implies a time lag of the

In Ref.[9], Eq. (40) is written in terms of the “relative stress response relative to the external fielcbgwt}. Using
structure factor distortion” $—S%%)/S%% instead of the that, co$wt— ¢}=codpjcogwt}+sin{g}sin{wt}, and compar-
functionsF™™°" The reason for introducing these functions ing to Eq.(31) gives,
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T T T T especially for larger values of the stationary Peclet number

Parallei

Paraliel | \. The reason for this is as follows. As we have seen in Fig.

2, the structure factor response to the oscillatory shear com-
ponent is roughly a factor of 10 smaller for the parallel case
0.10 ‘ 3 in comparison to orthogonal superposition. This is caused by
the fact that part of the equilibrium microstructure is unaf-
fected by the stationary shear flow: in directions perpendicu-
lar to the stationary flow the structure factor is equal to the
equilibrium structure factofsee Eq.(28) and Fig. 1. For
parallel superposition the external field just modifies the
shear rate of the stationary flow a bit, and the structure factor
perpendicular to the flow direction remains equal to the equi-

0.05 E

0.00 B

L& librium structure For parallel superposition, only the micro-
2 0 2 4 8 structure that is already distorted by the stationary flow is
T T T T T probed For orthogonal superposition, however, the structure

Orthogonal | Orthogonal

that is unaffected by the stationary flow will also be affected.
For orthogonal superposition, part of the microstructure that

is probed is the equilibrium microstructur&ince the non-
distorted, equilibrium microstructure is more susceptible to
an external field than the already highly distorted microstruc-
ture, orthogonal response functions are larger than parallel
response functions. This is the reason why, for example, the
storage modulus for parallel superposition goes down with
decreasing frequencies much faster as for orthogonal super-
position[see Figs. B) and Jd)].

0.05 b

0.00 T Within the present microscopic approacthe difference
(d) ] between the viscoelastic response for orthogonal and paral-
i 1 i [ 2 1 n 1 1 1 ] 1 . . . . - -
e 2 0 2 4 6 lel superposition is entirely due to the anisotropy in micro-
logioQ2 log;o2 structural order under stationary shear flol®@ur reasoning

is entirely based on the anisotropy of the stationary sheared
FIG. 4. The shear viscosity related to the superimposed sheatructure factor. Such an input is completely absent in phe-
flow (scaled with the factog ™ *d, which in the present case is equal nomenological models for superposition rheology and seems
to 0.0]) as a function of the frequency on a logarithmic scale. Theto obscure the connection between the two approaches.
top two figures are for parallel superposition, the bottom two figures For the near-critical system discussed above, the domi-
for orthogonal flow.(2) and(c) show the real paml’ of the shear  nant effect of the stationary shear flow is to diminish micro-
viscosity and(b) and(d) its imaginary parN". The various station-  giyyctural order. This may be different in more complicated
ary Peclet numbers are indicated in the figures. systems, like entangled polymers. Here, stationary shear flow
can induce a considerable amount of new microstructure.

7' (0)=f(w)code(w)}, This new microstructure does of course respond to the super-
imposed oscillatory shear flow and can thus lead to an in-
7 (0)=f(w)sin{o(w)}. (44) crease of the response as compared to the otherwise quies-

cent system. This might even lead to larger parallel response

Hence, a negative value &, which continuously devel- &S compared to orthogonal response.
opes from a zero value at small frequencies, implies that the
stress is actually e_lheaq of the externally imposed field. This \, oN THE VALIDITY OF THE KRAMERS-KRONIG
is not in contradiction with causality. In fact, the value of the RELATIONS
structure factor in Eq(23) at a given time depends only on
past times, and is thus a causal solution. That the stress re- Let us first recapitulate the conditions under which the
sponse is ahead of the external field is not in contradictiorKramers-Kronig relations are valid. Define a response func-
with causality since at times where transients have died awayon f(Q), with Q e R, as,
the system has experienced many oscillations and therefore
“knows” about what is “ahead.” The future is just an infi-
nite repetition of the past. At short times, when the external . o
field just became active, there must be a time lag of the stress f(Q)= f drf(7) exp{iQ}. (45
response, but as soon as transients died away, there is noth- 0
ing against the stress being ahead of the external field.

It is also clear from Figs. 4 and 5 that for low frequenciesThe fact that the integration ranges from Ootoinstead of
(1< 10\, say the response functions for parallel superpo-the entire real axis expresses causality. We impose the con-
sition are always smaller than for orthogonal superpositiongition,
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4 : . . 4

Paraliel Paralle!

loguo(5"dG") logu(&"dG")

2L 2

FIG. 5. The loss and storage
moduli (scaled with the factor
&71d, which in the present is
equal to 0.01 as a function of the
frequency on a double-logarithmic
) scale. The top figures are for par-
allel superposition, the bottom
two for orthogonal flow.(a) and
(c) show the loss moduli ancb)
and (d) the storage moduli. The
various stationary Peclet numbers
\ are indicated in the figure@or
the two left figures the values af
for the various curves are the
same as for the two figures on the
right).

Orthogonal

logo(£'dG™) logi(&'dG")

2t 2t

1000

IOng logIOQ

% lidity of the Kramers-Kronig relations for the real and imagi-

JO drr|f(7)]<e, (46)  nhary parts of the functiorf defined in Eq.(45). In fact,
assuming continuity of (7), the inequality(46) implies the

on f(’T) It would be phys|ca||y unrealistic Wthr(T) would inequality (47), so that the actual conditions to be satisfied

be singular for some finite-time. The possible divergence are Eq.(46) and(48).

of the above integral can therefore only be due to a too slow For the colloidal system under consideration here, we

decay of|f(7)| to 0 asr—. This condition thus implies have from Eqs(30) and(40),

that,

) n(Q)=77’(9)+i77"(Q)=rd7f(7)exp[i97}, (49
f dr|f ()| <. (47) 0

° where,
The two above condition&46) and (47) imply that f(Q) is

continuous differentiable on the real axis, and allow to con- et K2K

. . . : . C'(¢&°d) Ko B

tinue this function analytically into the upper half of the f(7)=1n, dK f(K&1d)

complex plane. This analytic continuation is obtained by re- A Ky

placing(} in Eq. (45) by the variablez=x+iy with x andy X G(7)[ 1+ G2(1) {S*&G( 7)) — SHG( 7))}
both real, whiley=0 in the upper half of the complex plane.

We simply denote this analytic continuation &&). Let Xexp{—H(7)}. (50

C*(R)={z|]z=Rexplig},pc[0,7]} denote the semicircle
with radiusR in the upper half plane. Whenevé¢z) van-
ishes on the semicircle when the radius tends to infinity,
is, when,

Let us analyze whether the two conditiof@) and (48) are
tha%atisﬁed_ for the present case. o N
Consider first the conditiofd6), which is a condition on
the long-time behavior of( 7); this function should decay to
zero at infinity sufficiently fast to guarantee the existence of
lim max |f(z=Rexplie})|=0, (48  the integral. The long-time tzehavior 6fr) relates to the
R—> ¢e[0,7] small frequency behavior of ()= #7(Q2). Now suppose
R that the effect of the stationary shear is to diminish the mi-
the integral off (z)/(z— ) with respect taz over the curve crostructure, that is, the structure factor under stationary
C*(R) tends to 0 wherR—«. The Kramers-Kroning rela- shear is smaller than the equilibrium structure factor for all
tions now follow directly from Cauchy’s integral theorem. wave vectors. In that case the response functions to a super-
The EQs.(46)—(48) are thus sufficient conditions for the va- imposed flow at low frequencies are smaller than the re-
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sponse functions of the otherwise quiescent system; part @b the fact that the stationary sheared microstructure is an-
the microstructure that could have responded is now deisotropic, and the two superposition experiments probe dif-
stroyed by the stationary shear flow, or equivalently, strucferent parts of this anisotropic structur&he parallel super-

ture that would have responded in the absence of stationappsition response functions will generally be larger than the
shear flow is no longer available for superimposed responsgyrthogonal ones, since parallel superposition probes already
In that case the response functifi(7)| cannot be larger highly distorted microstructurgby the stationary flow

than for the otherwise quiescent system. This implies that thg hile othogonal superposition probes microstructure that is
condition (46) is satisfied for the superimposed responseyisiorted to a lesser extent.

functions whenever it is satisfied for the otherwise quiescent gq; the systems discussed here, superimposed response

system. , _ functions are found to be smaller than the response functions
Furthermore, the response functigri(}) will not be af- ¢4 the otherwise quiescent system, where stationary shear
fected by the stationary shear flow for sufficiently large fre-f4\y js absent. This is due to the fact that the breakdown of
quencies of the superimposed flow, since sufficiently fasiyicrostructural order is dominant over shear induced order.
dynam|§:al modes are able to mstantangously follow tr_]e eXFor more complicated systems, like entangled polymer solu-
ternal field. In fact, as we have seen in Sec. IMd2e in  (ions or systems close to the gel transition line, stationary
particular Figs. 4 and )5 the viscosity is not affected for gpear flow may induce a considerable amount of new struc-
frequencies larger than about A0Hence, when the condi- yre This new microstructure, that does not exist without
tion (48) for f(z)= 7(2) is satisfied without stationary shear stationary shear flow, can lead to an enhancement of the
flow, they are also satisfied in the presence of a stationaryesponse functions; new microstructure is created that can
shear flow. respond to the superimposed flow. In such cases superim-
The conclusion from the above reasoning is, that when th@osed response functions can be larger for sufficiently small
Kramers-Kronig relations hold for the usual frequency de-frequencies as compared to the response functions for the
pendent viscosity where no stationary shear field is applietbtherwise quiescent system.
they also hold for the viscosity related to a superimposed The Kramers-Kronig relations hold when the breakdown
oscillatory flow. of microstructure due to the stationary flow is dominant over
The crucial assumption that was made to arrive at thehe stationary shear enhancement of microstructimesuch
validity of the Kramers-Kronig relations, was that the struc-cases the inequalit{46) is satisfied, which ensures the va-
ture factor is diminished by the stationary flow for all wave lidity of the Kramers-Kronig relations. There are a number of
vectors. Even for the near-critical system considered herphenomelogical models that do not satisfy the Kramers-
this is not entirely true. Along the compressional direction ofKroning relations. This does not mean that these phenom-
the shear flow there is an increase of the structure factor. Thenological models are inaccurate; it can very well be that, at
breakdown of structure is however much more dominant, s¢east within some frequency range, these models give accu-
that the arguments given above remain valid. There are sysate estimates for response functions. However, it would be
tems, however, for which there is a considerable enhanceeassuring when a phenomenological model does satisfy the
ment of structure due to the stationary shear flow, such agramers-Kronig relations. A purist might say that such mod-
entangled polymer systems and colloidal systems close to @s that violate the Kramers-Kronig relations are “fundamen-
gel line. It might be that for such systems the Kramers-tally wrong,” while a practionist might say that they are

Kronig relations are violated. “quite accurate in the experimentally accessible frequency
range.” The Kramers-Kronig relations could be violated for
VI. REMARKS AND CONCLUSION systems where the stationary shear flow induces a consider-

able amount of new structure, like entangled polymers or

In the present microscopic approach the difference besystems close to the gel transition line
tween parallel and orthogonal response functions can be un- One of the important points here has been that the struc-
derstood entirely on the basis of the anisotropic microstructure factor is not affected by shear flow in directions perpen-
ture under stationary shear flow. Particularly important is thedicular to the flow directiofisee Eq(28)]. An exact numeri-
fact that the stationary flow does not affect the microstruc-cal treatment of the two-particle Smoluchowski equation for
ture in directions perpendicular to the flow direction. In thesehard spheregl4] shows that the distortion along these direc-
directions the structure factor remains the same as in equtions is nonzero. This is due to nonlinear terms in the equa-
librium [see Fig. 1 and Eq28)]. Under a parallel superim- tion of motion for the total-correlation function and to the
posed flow, the structure factor retains its equilibrium formno-flux condition at contact of two particles. For the present
in directions perpendicular to the flow, and only modifies thecase of colloids near their gas-liquid critical point, however,
distortion that is already caused by the stationary flow. Thehe situation is quite different: linearization is allowed in the
still existing equilibrium structure that is present under sta-mean-field region, while the no-flux condition plays no role
tionary flow will be probed, however, by an orthoganol su-here, since the asymptotic behavior of the total-correlation
perimposed flow field. Hencgarallel superposition probes function for large distances is calculated. Indeed it has been
nonequilibirum structure only while orthogonal superposi- shown experimentally15] that there is no distortion of the
tion probes also in part, equilibrium structure structure factor in directions perpendicular to the flow direc-

A generally valid statement is th#te difference between tion, except very close to the critical point, beyond the mean-
the response to parallel and orthogonal superposition is dudield region.
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