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Superposition rheology
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The interpretation of superposition rheology data is still a matter of debate due to lack of understanding of
viscoelastic superposition response on a microscopic level. So far, only phenomenological approaches have
been described, which do not capture the shear induced microstructural deformation, which is responsible for
the viscoelastic behavior to the superimposed flow. Experimentally there are indications that there is a funda-
mental difference between the viscoelastic response to an orthogonally and a parallel superimposed shear flow.
We present theoretical predictions, based on microscopic considerations, for both orthogonal and parallel
viscoelastic response functions for a colloidal system of attractive particles near their gas-liquid critical point.
These predictions extend to values of the stationary shear rate where the system is nonlinearly perturbed, and
are based on considerations on the colloidal particle level. The difference in response to orthogonal and parallel
superimposed shear flow can be understood entirely in terms of microstructural distortion, where the anisotropy
of the microstructure under shear flow conditions is essential. In accordance with experimental observations we
find pronounced negative values for response functions in case of parallel superposition for an intermediate
range of frequencies, provided that microstructure is nonlinearly perturbed by the stationary shear component.
For the critical colloidal systems considered here, the Kramers-Kronig relations for the superimposed response
functions are found to be valid. It is argued, however, that the Kramers-Kronig relations may be violated for
systems where the stationary shear flow induces a considerable amount of new microstructure.

DOI: 10.1103/PhysRevE.63.021406 PACS number~s!: 82.70.Dd, 05.70.Jk, 51.20.1d, 64.60.Ht
na

in

io

ity

ea

t
ro

cr
o

e

ns
ea
cr
id
n
n
n
ve
ra
d

ne
is

pic
is-
ose
to
es.
u-
as-
en-
e

os-
ith
of

V C
re-

and
for
ity
ys-
ing

of

s-
I. INTRODUCTION

Superposition rheology is a tool to investigate the inter
dynamics of stationary sheared systems. At present there
a number of phenomenological models@1–3#, but no micro-
scopic theory exists where response functions are obta
from considerations on the particle level.It is the purpose of
this paper to develop a microscopic theory for superposit
rheology. The system that will be considered is aconcen-
trated system of attractive, spherical colloids in the vicin
of the gas-liquid critical point. Explicit results are obtained
for the viscoelastic response functions related to a w
shear field superimposed on a~possibly strong! stationary
shear field. Interesting phenomena are observed when
stationary shear field is strong enough to perturb the mic
structure in a nonlinear fashion. To some extent these mi
scopic considerations lead to an intuitive understanding
superimposed response.

Some of the commonly used phenomenological mod
violate the Kramers-Kronig relations@1,2#. It will be argued
that the Kramers-Kronig for the superimposed respo
functions are valid for systems in which the stationary sh
flow does not lead to a considerable enhancement of mi
structure. For systems where shear flow leads to a cons
able enhancement of microstructure, the Kramers-Kro
might be violated. Such a violation might be found for e
tangled polymer systems, or systems close to the gel tra
tion. For the near-critical system considered here, howe
microstructural distortion is dominant over microstructu
enhancement, and the Kramers-Kronig relations are foun
apply.

This paper is organized as follows. First of all we outli
the basic steps that go into microscopic theories for v
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coelastic behavior. Although the structure of a microsco
theory for viscoelastic behavior of colloids has been d
cussed by many authors before, we feel that a short exp
here is worthwhile, since this paper will be of interest
rheologists who are probably not familiar with these issu
After having defined the flow geometry in Sec. III, the s
perposition rheology of attractive spheres near their g
liquid critical point, where many-body interactions are ess
tial, is treated in extenso in Sec. IV. In Sec. IV A som
introductory remarks on the critical divergence of the visc
ity are given for those rheologists who are not familiar w
critical phenomena. Sec. IV B is concerned with the effect
shear flow on the microstructure of the suspension, Sec. I
discusses a microscopic expression for the viscoelastic
sponse functions, and Sec. IV D contains explicit results
an interpretation of the difference of response functions
parallel and orthogonal superposition. In Sec. V the valid
of the Kramers-Kronig relations for stationary sheared s
tems is discussed. Section VI contains some conclud
remarks.

II. THE BASIC STEPS IN A MICROSCOPIC THEORY

A microscopic theory for viscoelastic behavior consists
three steps:

~i! Calculate the probability density function~PDF! P
[P(r1 , . . . ,rN) of the position coordinates $r j u j
51,2, . . . ,N% of the spherical colloidal particles for the sy
tem subjected to flow. The PDFP obeys the so-called
Smoluchowski equation, which reads@4–6#,

]P

]t
5D0(

j 51

N

“ j•@“ j P1bP“ jF#2(
j 51

N

“ j•@G•r jP#,

~1!
©2001 The American Physical Society06-1



le
-

,
n

llo

he
io
he

e
th

r
es

d

ca

l
v
a

e

e

r

ys-

c-
o-
ier

s

n.

se

at
re-
time
ans

ar

he

ear
y
we

JAN K. G. DHONT AND NORMAN J. WAGNER PHYSICAL REVIEW E63 021406
where hydrodynamic interactions between colloidal partic
are neglected. Here,D0 is the single-particle diffusion coef
ficient,“ j is the gradient operator with respect tor j , andF
is the total interaction energy of the assembly ofN colloidal
particles. Furthermore,G is the velocity gradient tensor
which will be specified in the next section. This is a diffusio
equation that includes direct interactions between the co
dal particles~through the potentialF), their Brownian mo-
tion ~second term between the square brackets! and convec-
tive motion ~through the last term!. It is a microscopic
equation of motion since it is formulated on the level of t
colloidal particles. The first task is thus to solve this equat
of motion wih approximations that are appropriate for t
particular system under consideration.

~ii ! Find the functionf of the position coordinates of th
colloidal particles, which upon averaging with respect to
above-mentioned PDF gives the macroscopic viscoelastic
sponse functions, or equivalently, the macroscopic str
that is,

stress5^ f &

[E dr1 . . . E drNf ~r1 , . . . ,rN!P~r1 , . . . ,rN ,t !.

~2!

Such a microscopic expression for the stress has been
rived in full generality by Batchelor@7#. In Sec. IV C we will
give an elementary derivation that applies to near criti
systems.

~iii ! Evaluate the average in Eq.~2!. Once steps~i! and~ii !
are accomplished, one should then evaluate the integra~2!
to find, for example, the shear rate dependence of the
coelastic response functions. In most cases the explicit ev
ation relies in part on numerical integration.

The function in Eq.~2!, which upon averaging gives th
stress, is generally a sum of functionsf (r i2r j ) of two posi-
tion coordinates only. For identical colloidal particles w
then have~the summation ranges overiÞ j ),

stress5E dr1 . . . E drN (
i , j 51

N

f~r i2r j !P~r1 , . . . ,rN ,t!

5
N~N21!

V2 E dr1E dr2f~r12r2!g~r12r2 ,t!, ~3!

where V is the volume of the system andg is the pair-
correlation function, which is defined as

g~r12r2 ,t ![V2E dr3 . . . E drNP~r1 ,r2 ,r3 , . . . ,rN ,t !.

~4!

This pair-correlation functiong(r ,t) is thus proportional to
the probability to find two colloidal particles a distancer
5r12r2 apart. Step~i! is now reduced to finding the shea
rate dependent pair-correlation functiong. Note that by defi-
nition g(r )→1 asr→`.
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Since the deviatoric part of the stress in an isotropic s
tem vanishes, we can write the integral in Eq.~3! also as,

stress5
N~N21!

V E drh~r ! f ~r !, ~5!

where h[g21 is referred to as the total-correlation fun
tion. This function vanishes at infinity. The reason for intr
ducing the total-correlation function is that it is often eas
to solve equations for the structure factorS(k), which is
essentially the Fourier transform ofh(r ),

S~k!511rĥ~k!, ~6!

where r̄5N/V is the number density of colloidal particle
and with ĥ(k) the Fourier transform ofh(r ),

ĥ~k!5E dr h~r ! exp$ ik•r%. ~7!

The Fourier transform ofh(r ) is well defined sinceh(r )
vanishes at infinity, contrary to the pair-correlation functio
Parseval’s theorem allows one to rewrite the stress~3! in
terms of a wave-vector integral,

stress5
N~N21!

V~2p!3 E dk ĥ~k! f̂ ~k!, ~8!

where f̂ (k) is the Fourier transform off (r ). It is therefore
generally sufficient to find an expression for the~shear-rate
dependent! structure factor in order to evaluate the respon
functions.

Another motivation to calculate the structure factor is th
it is of direct relevance for scattering experiments. The p
dicted shear induced anisotropy and the shear-rate and
dependence of the structure factor can be verified by me
of light scattering experiments.

III. THE FLOW FIELD

Thestationaryflow field considered here is a simple she
flow in the x direction with its gradient component in they
direction. Thesuperimposed oscillatoryshear flow is either
parallel to the stationary shear flow or orthogonal to it. T
velocity u at a point r is u(r )5G•r , with G the velocity
gradient tensor. This tensor is equal toG5G01Gs with G0
the velocity gradient tensor pertaining to the stationary sh
component of the flow andGs to the superimposed velocit
gradient tensor. For the above described stationary flow
have

G05ġS 0 1 0

0 0 0

0 0 0
D , ~9!

while for parallel superposition,
6-2
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SUPERPOSITION RHEOLOGY PHYSICAL REVIEW E63 021406
Gs5ġs cos$vt%S 0 1 0

0 0 0

0 0 0
D , ~10!

and for orthogonal superposition,

Gs5ġs cos$vt%S 0 0 0

0 0 0

0 1 0
D , ~11!

where the shear flow is in thez direction. Here,ġ andġs are
the shear rates corresponding to the stationary and oscilla
component of the flow, respectively. The oscillatory sh
rateġs is assumed small enough to assure a linear viscoe
tic response, while the shear-rateġ of the stationary compo
nent may perturb the systems microstructure in a nonlin
fashion.

These forms of the velocity gradient tensors assume
frequencies are small enough to assure that the penetr
depth is of the order or larger than the gapwidth. We do
consider surface loading experiments. Microstructural
namics of near-critical systems is very slow, due to criti
slowing down, which enables one to perform bulk expe
ments at frequencies much larger than typical inverse mi
structural relaxation times.

IV. SHEARED SUSPENSIONS OF ATTRACTIVE SPHERES
NEAR THEIR GAS-LIQUID CRITICAL POINT

A gas-to-liquid transition in a monodisperse suspension
spherical colloidal particles can occur when the pa
interaction potential has a sufficiently strong attractive co
ponent. On approach of the corresponding gas-liquid crit
point the range of the effective interaction potential diverg
This implies that increasingly larger groups of colloidal pa
ticles interact simultaneously on approach of the criti
point. The range of the effective interaction potential is m
sured by the so-called correlation lengthj. The divergence
of the range of the effective interaction potential, and he
the number of particles that interact simultaneously, gi
rise to divergence of the shear viscosity. Contrary to dil
suspensions, where two-particle interactions are domin
now many-body interactions are essential.

A. Critical divergence of response functions

The fact that close to the critical point many particl
interact simultaneously, gives rise to a large force neces
to break up these interactions in order to make the sys
flow. This implies a large viscosity, which ultimately d
verges at the critical point, since there, each colloidal part
interacts with all other colloidal particles in the system.

Critical divergence resulting from the development
long-range correlations can be understood more formally
follows. As pointed out in Sec. II, the viscosityh can be
written as an average as,
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h5E dr f ~r !h~r !, ~12!

whereh(r ) is the total-correlation function andf (r ) is an as
yet unknown function of the distancer between two colloi-
dal particles. At distancesr between two colloidal particles
so large that they do not interact with each other any mo
the total-correlation function vanishes. The development
long-range correlations means thath(r ) goes to zero at large
distances more and more slowly. At the critical point
decay to zero at infinity is not sufficiently rapid anymore
assure convergence of the integral in Eq.~12!. This is the
formal argument why the viscosity diverges at the critic
point ~like many other transport coefficients!. How fast a
transport coefficient diverges on approach of the criti
point depends solely on the asymptotic behavior of the c
responding phase functionf (r ) at large distancesr. There-
fore, for the calculation of the diverging viscosity, only th
asymptotic behavior of the functionf (r ) at large distances is
of importance. The contribution to the integral in Eq.~12!
resulting from integration over short distances~say r less
than a few times the range of the pair-interaction potent!
constitutes the so-called ‘‘background viscosity.’’ The r
maining contribution to the integral, reflecting the develo
ment of long-range correlations, is referred to as
‘‘anomalous part of the viscosity.’’ The anomalous contrib
tion to the viscosity diverges on approach of the critical po
while the background viscosity remains well-behaved. O
interest here is in the anomalous part of the viscoelastic
sponse functions.

B. Microstructure under shear flow

Without shear flow the structure factor attains t
Ornstein-Zernike form~see, for example Refs.@6,8#!,

Seq~k!5
1

bS

j2

11~kj!2
, ~13!

where b51/kBT, S is a well-behaved, positive constan
which is related to the Cahn-Hilliard square gradient coe
cient, andj is the correlation length that measures the d
tance over which colloidal particles still interact with ea
other. The correlation length is given by,

j5ASY dP

dr̄
, ~14!

whereP is the osmotic pressure andr̄ the number density of
colloidal particles. SincedP/dr̄→0 on approach of the
critical point, the correlation length diverges, so that t
structure factor is infinite for zero wave vectors at the critic
point. Close to the critical point the structure factor exhib
a strong upswing at small wave vectors leading to stro
forward scattering of light, giving rise to a strong increase
the turbidity. This phenomenon is referred to as ‘‘critic
opalescense.’’
6-3
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JAN K. G. DHONT AND NORMAN J. WAGNER PHYSICAL REVIEW E63 021406
The Smoluchowki equation~1! can be integrated with re
spect to the position coordinatesr3 , . . . rN to obtain an equa-
tion of motion for the total-correlation functionh(r12r2).
Since we are only interested in the asymptotic behavio
large distances, andh vanishes at infinity, the equation o
motion can be linearized with respect toh. With an appro-
priate closure relation for the three-particle correlation fu
tion and employing a gradient expansion ofh, one finds after
Fourier transformation the following equation of motion f
the structure factor@6,9,10#,

]S~k,t !

]t
5@ ġk11ġs cos$vt%kn#

]S~k,t !

]k2

22Deff~k!k2$S~k,t !2Seq~k!%, ~15!

wherekj is the j th component of the wave-vectork, while
kn5k3 for orthogonal superposition andkn5k1 for parallel
superposition, that is,

n51, for i superposition,

53, for 'superposition. ~16!

Furthermore,De f f is a diffusion coefficient which is equal to

De f f~k!5bD0FdP

dr̄
1k2SG , ~17!

whereD0 is the single-particle, Stokes-Einstein diffusion c
efficient.

Linearization of the equation of motion for the tota
correlation functionh amounts to the neglect of terms o
orderO(h2) with respect to a linear termh b dP/dr̄. Very
close to the critical point, whereb dP/dr̄ is a very small
number, such a neglect is no longer allowed. The equatio
motion ~15! is therefore only valid in the mean-field regio
not too close to the critical point. Beyond mean field, ve
close to the critical point, equations of motion for the stru
ture factor are nonlinear, contrary to Eq.~15!. Furthermore,
Eq. ~15! is valid only for wave vectorsk smaller than abou
2p/RV , with RV the range of the pair-interaction potentia
since it relates to the asymptotic form of the total-correlat
function for large distances.

The first term on the right-hand side of Eq.~15! describes
the distortion of microstructure due to the shearing motion
the suspension and the second term describes the equilib
restoring diffusion. The relative magnitudes of these t
counter balancing terms determine the microstructural
tures of the system. This competition between convec
and diffusion will certainly be modified by hydrodynam
interactions, but the essential features of the microstruc
under shear flow are captured without considering hydro
namic interactions. Inclusion of hydrodynamic interactions
something that remains to be done.

Note that on approach of the critical point, whe
dP/dr̄→0, the diffusion coefficient~17! becomes small a
small wave vectors. This slowing down of diffusive motio
on approach of the critical point is commonly referred to
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‘‘critical slowing down.’’ As a result of critical slowing
down the frequency of the superimposed shear flow, wh
elastic response will be found, shifts to lower values on
approach of the critical point.

The dimensionless form of Eq.~15! reads,

]S~K ,t!

]t
5@lK11ls cos$Vt%Kn#

]S~K ,t!

]K2
2K2@11K2#

3$S~K ,t!2Seq~K !%, ~18!

whereK is a dimensionless wave vector,

K5kj, ~19!

andt a dimensionless time,

t52De f f~k50!j22t52D0bSj24t. ~20!

This is the time in units of the time required for a colloid
particle to diffuse over a distance equal to the correlat
length. Furthermore, the following ‘‘dressed Peclet nu
bers’’ are introduced,

l5
ġj4

2D0bS
5

ġj2

2Deff~k50!
,

~21!

ls5
ġsj

4

2D0bS
5

ġsj
2

2Deff~k50!
,

andV is a dimensionless frequency~or ‘‘a dressed Deborah
number’’!,

V5
vj4

2D0bS
5

vj2

2Deff~k50!
. ~22!

The dimensionless numbersl and ls measure the long-
wavelength shear induced distortion of the structure fac
resulting from the stationary shear component and the os
latory component, respectively. The response to the supe
posed shear field is linear whenls,1 and nonlinear when
ls.1. The stationary shear field perturbs the microstruct
only slightly whenl,1 and in a nonlinear fashion whenl
.1. A significant phase shift of the structure factor respon
relative to the external field;cos$vt% will be found for V
.1, while for V,1 the viscous response will be almo
instantaneous.

Notice thatl, ls , and V, for given ġ, ġs , and v, be-
come larger on approach of the critical point because of
increasing correlation lengthj. The effect of shear flow is
thus more pronounced closer to the critical point. This is d
to the increasing sizej of groups of correlated particles o
approach of the critical point, which larger groups are mo
easily affected by shear flow. Furthermore, due to criti
slowing down of dynamics, the typical frequency where t
response of the structure factor will have an out-of-ph
component with the applied oscillatory field, occurs
smaller frequenciesv.
6-4
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SUPERPOSITION RHEOLOGY PHYSICAL REVIEW E63 021406
Although the equation of motion~18! can be solved for
large values ofls , where the viscoelastic response is no
linear, we restrict ourselves here to small values ofls . The
general idea is to probe the dynamics of a possible non
early, stationary sheared system with a minimum effect
the superimposed flow. The oscillatory solution of Eq.~18!
to linear order inls , after transients have died away, read

S~K ,t!5Sstat~K !1
lsKn

lK1
E

2`

t

dt8cos$Vt8%G2~t2t8!

3@11G2~t2t8!#$Sstat
„G~t2t8!…

2Seq@G~t2t8!#%exp$2H~t2t8!%, ~23!

where the vectorG is equal to,

G~t2t8!5@K1 ,K21lK1~t2t8!,K3#, ~24!

whereG is its length, and the functionH in the exponent is
equal to,

H~t2t8!5E
t8

t

dt9G2~t2t9!@11G2~t2t9!#5~t2t8!

3@K2~11K2!1~112K2!K2lK1~t2t8!

1 1
3 ~112K214K2

2!l2K1
2~t2t8!2

1 1
2 K2l3K1

3~t2t8!31 1
5 l4K1

4~t2t8!4#.

~25!

Here, K j is the j th component of the dimensionless wa
vector ~19!. Furthermore,Sstat(K ) is structure factor unde
stationary shear flow, without the superimposed oscillat
flow. From the equation of motion~18! with ls50 and with
the use of Eq.~13! for the equilibrium structure factor, on
finds that,

Sstat~K !5Seq~K !F11
1

lK1
E

K2

6`

dX

3@K22K2
21X2#@K2

22X2#expH 2
F~K uX!

lK1
J G ,

~26!

where,

F~K uX!5E
K2

X

dY@K22K2
21Y2#@11K22K2

21Y2#

5@X2K2#@K22K2
2#@11K22K2

2#

1 1
3 @X32K2

3#@112K222K2
2#1 1

5 @X52K2
5#.

~27!
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The upper integration limit in Eq.~26! is equal to1` when
lK1.0, and equal to2` whenlK1,0.

A crucial observation is thatin directions perpendicular
to the stationary flow direction (where K150) the stationary
component of the shear flow does not affect the microst
ture, that is,

Sstat~K !5Seq~K !, for K150. ~28!

As can be seen from Fig. 1, whereSstat is plotted for various
values ofl in the plane whereK350, the structure factor
distortion is highly anisotropic. There is no distortion in d
rections whereK150, while in the other directions the struc
ture factor is significantly distorted. This will be importan
when discussing the difference between the response to
thogonal and parallel superimposed shear flow. Contrar
the parallel superimposed shear field, the orthogonal su
imposed shear field acts in part on microstructure that is
intact, that is, unaffected by the stationary shear field. T
leads to a viscoelastic response to orthogonal flow tha
larger then for parallel flow. This is illustrated in Fig. 2
where the additional distortionS2Sstat due to the superim-
posed oscillatory flow for orthogonal~left column of figures!
and parallel ~right column! superposition is plotted. The
middle column indicates the times during the oscillation
which the structure factor is calculated. All plots refer to cu
in reciprocal space whereK251 ~as will be seen later, di-
rections whereK250 do not contribute to the stress!. The
top two figures are the equilibrium and the stationary shea
structure factor~for l510). As can be seen, the distortio
for orthogonal superposition is about a factor of 10 larg
than for parallel superposition. The large distortion in case
orthogonal superposition occurs at wave vectors where
stationary structure factor is equal to the equilibrium stru
ture factor~indicated by the thick line in the top-right plot!.
This large susceptibility of the stationary sheared structu
factor to orthogonal superimposed flow leads to larger v
coelastic response functions as compared to parallel sup
imposed flow.

Except for the factor cos$Vt8% in Eq. ~23!, the entire in-
tegrand is a function oft2t8 only. Using that,

FIG. 1. The structure factorSstat under stationary shear flow a
a function ofK1 and K2 for K350 (K1 and K2 both range from
23 to 13). The most left figure is the Ornstein-Zernike equili
rium structure factor. The two other figures are for Peclet numb
l510 and 100, respectively.
6-5
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JAN K. G. DHONT AND NORMAN J. WAGNER PHYSICAL REVIEW E63 021406
cos$Vt8%5cos$V~t82t!1t%5cos$Vt%cos$V~t2t8!%

1sin$Vt%sin$V~t2t8!%,

allows one to rewrite Eq.~23! explicitly as an in-phase an
out-phase contribution to the oscillatory structure factor,

S~K ,t!5Sstat~K !1
lsKn

~j21d!2
@F in~K ul,V!cos$Vt%

1Fout~K ul,V!sin$Vt%#, ~29!

whered is the core diameter of the colloidal particles a
~renaming the new integration variabalet2t8 simply ast),

FIG. 2. The structure factor under superimposed oscillat
shear flow in the (K1 ,K3) plane withK251. The top left figure is
the Ornstein-Zernike equilibrium structure factor, the top right fi
ure is the structure factor under stationary shear flow with a Pe
numberl510. The thick line in the latter figure indicates the u
distorted structure atK150. In these figures bothK1 andK3 range
from 23 to 13. The left column of figures isS2Sstat for orthogo-
nal superimposed flow for various times. These times are indic
in the middle column by the black dot. BothK1 andK3 range from
21 to 11. The right column of figures are for parallel flow, whe
K1 andK3 range from22 to 12. Note that thez scale for parallel
flow is about factor of 10 smaller than for orthogonal flow,
indicated next to the two top figures in the columns. Here,ls

50.1, V50.1, andj21d50.01.
02140
H F in~K ul,V!

Fout~K ul,V!
J 5

~j21d!2

lK1
E

0

`

dtH cos$Vt%

sin$Vt% J G2~t!

3@11G2~t!#3$Sstat
„G~t!…

2Seq
„G~t!…%exp$2H~t!%. ~30!

Note that the in- and out-phase functionsF in,out are the same
for orthogonal and parallel superposition, and are indep
dent of the superimposed shear ratels ; this is the reason for
writing the factor lsKn explicitly in Eq. ~29!. The factor
;j22 is added to the definition of the functionsF in,out to
explicitate the divergence of the structure factors: the fu
tions F in,out are well behaved and independent of the cor
lation lengthj at the critical point since the structure facto
diverge likej2.

Note that even in the linear-response regime with resp
to the stationary component of the flow, wherel is small,
there are many relaxation times. For smalll we have, ac-
cording to Eq.~25!, H(t)5tK2(11K2), so that every dif-
ferent value ofK corresponds to a different relaxation tim
In fact these are the different diffusion modes. For stron
stationary flows, wherel.1, the additional contributions to
H in Eq. ~25! are related to coupling between convective a
diffusive modes. Even for the simplest colloidal system
Maxwell relaxation model, with a single relaxation time,
generally wrong. Only when the structure is dominated b
nonzero single wave vector,km say, there is a dominan
single relaxation time;1/D(k5km)km

2 , with D the relevant
diffusion coefficient. Otherwise there are many relaxati
times;1/D(k)k2.

Also note that the equation of motion~18! is singularly
perturbed by both the stationary and oscillatory compone
of the shear flow, with a mathematical boundary lay
aroundK50 with a width that varies like the square root o
the Peclet numbers. Within the boundary layer, a lineari
solution of the equation of motion is a bad approximatio
even for small values of the Peclet numbers. It makes se
however, to use the linearized solution to calculate lin
viscoelastic response functions, since in ensemble avera
represented by wave-vector integrals, the boundary la
does not contribute for small Peclet numbers, as its ex
vanishes with vanishing Peclet numbers.

The microstructure does not instantaneously adapt to
imposed oscillatory shear field;cos$Vt% when the Deborah
numberV is sufficiently large. This can be seen in Fig.
where the structure factor~23! for parallel superimposed
flow, normalized to its maximum value, is plotted as a fun
tion of time for the wave vectorK5(1/A3,1/A3,1/A3), for
l50.1 ~a linear perturbed microstructure by the stationa
component of the flow!, l510 ~a nonlinear perturbed micro
structure! and l51000 ~a strongly nonlinear perturbed m
crostructure! for various values ofV. The external field is
given by the dashed curve. In the top row figures~wherel
50.1) it is seen that an out-of-phase response becomes
dent for V51. When l exceeds 1, so that the stationa
shear flow perturbs the microstructure in a nonlinear fash
the microstructure ‘‘stiffens,’’ and an out-of-phase comp
nent becomes evident only at frequencies much larger t
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FIG. 3. The additional distor-
tion 2DS52(S2Sstat) of the
structure factor, resulting from
parallel superimposed shear flo
~normalized to its maximum
value! for the wave vectorK
5(1/A3,1/A3,1/A3) as a function
of time for stationary Peclet num
bers l50.1 ~top row figures!, l
510 ~middle row figures!, andl
51000 ~lower two rows of fig-
ures!, for various frequencies
Here,ls50.1 andj21d50.01.
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1. This is especially evident from the lower two rows
figures, wherel51000. ‘‘Stiffening of the microstructure’’
is due to the fact that larger stationary shear rates des
microstructures with increasingly larger diffusive relaxati
rates. The microstructure, of which the corresponding dif
sive relaxation time is sufficiently slow, is no longer prese
under stationary shear flow. This will, for example, result
an imaginary contribution to the shear viscosity that is
most 0 over a frequency range that increases with increa
stationary shear rates. Once the frequency is substant
larger thanl, an out-of-phase response of the microstruct
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becomes evident, leading to a nonzero value of the ima
nary part of the shear viscosity.

This effect of ‘‘stiffening of microstructure’’ is less pro
nounced for orthogonal superposition, since here part of
microstructure that is probed by the superimposed flow is
equilibrium structure@see Eq.~28!#. For parallel superim-
posed flow this unaffected, equilibrium structure will rema
intact, but will be affected by the orthogonally superimpos
flow.

For values of the superimposed Peclet numberls larger
than 1, one finds that the structure factor response is
6-7
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longer a~possibly shifted! cosine: higher-order Fourier com
ponents now come into play, giving rise to higher-ord
nonlinear viscoelastic response functions. These are not
sidered in the present paper.

C. Microscopic expression for the viscoelastic
response functions

To within linear response with respect to the superi
posed, oscillatory component of the shear flow, the str
s(t) can be written as,

s~ t !5ġs@h8~v!cos$vt%1h9~v!sin$vt%#, ~31!

which defines the the viscoelastic response functionsh8 and
h9. This is a valid definition when transients have died aw
so that the externally imposed flow field is sinusoidally va
ing with time. The in-phase response functionh8 is related
to the in-phase partF in of the structure factor in Eq.~30!,
while the out-phase response functionh9 is related to the
out-phase partFout.

A microscopic expression for the stress tensor for col
dal systems has been derived by Batchelor@7#. Only the
contribution to the stress that arises from interactions
tween the colloidal particles is of interest here, since o
these interactions become long ranged on approach of
critical point. The other terms in Batchelor’s expression co
tribute only to the well-behaved background viscosity. A
alternative, elementary derivation of a microscopic expr
sion for the anomalous contribution to the stress proceed
follows. The dissipated and stored energyU̇ per unit volume
and unit time, due to the superimposed shear field, is e
to,

U̇5ġs
2cos$vt%@h8~v!cos$vt%1h9~v!sin$vt%#. ~32!

On the other handU̇ is proportional to the additional velocit
DV j

s that colloidal particlej attains as a result of the supe
imposed field, multiplied by the forceFj

h that the fluid exerts
on that particle~the superscript ‘‘h’’ stands for ‘‘hydrody-
namic’’!, summed over all particles in the system,

U̇5
1

V (
j 51

N

^DV j
s
•Fj

h&, ~33!

whereV is the volume of the system,N the number of col-
loidal particles, and the bracketŝ. . . & denote averaging
with respect to the probability density function~PDF! of the
position coordinates of the colloidal particles. Equating
two expressions~32! and ~33! one obtains,

ġs
2cos$vt%@h8~v!cos$vt%1h9~v!sin$vt%#

5
1

V (
j 51

N

^DV j
s
•Fj

h&, ~34!
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which is the microscopic expression we were after, provid
that DVs

j andFj
h can be expressed in terms of functions th

depend only on the position coordinates of the colloidal p
ticles, which then defines the functionf in Eq. ~5!.

The additional velocity consists of two parts. First of a
each particle is carried by the additional fluid flow, whic
velocity is equal toGs•r j , with Gs the part of the velocity
gradient tensor that relates to the superimposed flow fi
@see Eqs.~10! and ~11!#. Secondly, the flow fieldGs•r is
scattered by the cores of other particles. This scattered
field affects particlej in its motion and changes its velocit
by Cj8 :Gs , whereCj8 is a third rank tensor, which depend
on all the position coordinates of the colloidal particles. T
symbol ‘‘:’’ is a double contraction, where thei th compo-
nent of the vectorCj8 :Gs is equal to(n,m51

3 (Cj8) inm(Gs)mn .
The proportionality of this contribution withGs is the result
of the linearity of the creeping flow equations, which d
scribe the low Reynolds number hydrodynamics in susp
sions. Hence,

DV j
s5ġscos$vt%@Ĝs•r j1Cj8 :Ĝs#, ~35!

whereĜs is the velocity gradient tensor in Eqs.~10! and~11!

without the prefactorġscos$vt%. For the calculation of the
anomalous part of the viscoelastic response functions
sufficient to use the asymptotic form of the ‘‘disturban
tensor’’ Cj8 for large separations of colloidal particles, as w
explained in Sec. IV A. This asymptotic form is just the su
of pair contributions,

Cj85(
i 51

N

C~r i j !, ~36!

wherer i j 5r i2r j , and the summation ranges overiÞ j . C is
the disturbance tensor for just two particles, without the
tervening effects of other particles. As it will turn out, th
stress depends only on the divergence“•@C:Ĝs#. The lead-
ing asymptotic form for large distances of this divergence
found by solving the two-particle creeping flow equatio
~with stick boundary conditions! @6,11#,

“R•@C~R!:Ĝs#5
75

2 S a

RD 6

R̂•Ĝs•R̂, ~37!

whereR̂5R/R anda is the core radius of the colloidal par
ticles.

The hydrodynamic forceFj
h follows from the approximate

force balance on the Brownian time scale. As a result of
large viscous friction of the core of the colloidal particle
with the solvent, their momentum coordinates relax to eq
librium with the solvent in a very short-time interval. Th
Brownian time scale is larger than this momentum relaxat
time. As a result, the total force on each colloidal particle
very small in comparison to each of the remaining forces
the Brownian time scale. There are three remaining forc
the hydrodynamic forceFj

h , the potential interaction force
6-8
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SUPERPOSITION RHEOLOGY PHYSICAL REVIEW E63 021406
2“ jF, with F the total potential energy of the assembly
colloidal particles, and the Brownian force2kBT¹ j ln$P%,
with P the probability density function of the position coo
dinates of all the colloidal particles. These forces add up z
on the Brownian time scale, and hence,

Fj
h5“ jF1kBT“ j ln$P%. ~38!

In this way the hydrodynamic force is expressed in terms
functions of the position coordinates of the colloidal pa
ticles.

The anomalous part of the viscoelastic response funct
is found from the microscopic expression~34! together with
Eqs.~35! and ~38! to be equal to,

H h8

h9J 5
kBTr̄2Csv

p ġs
E

0

2p/v

dtH cos$vt%

sin$vt% J ER.d
dR@h~R!

2hstat~R!#“R•@C~R!:Gs#, ~39!

where r̄5N/V is the colloidal particle number density an
Cs is a positive constant, which is related to the short-ran
behavior of the equilibrium correlation function. The avera
in the above result is with respect toh2hstat, with hstat the
total-correlation function of the stationary sheared syste
instead of justh, because in experiments only the oscillato
stress resulting from the superimposed flow is measured.
stress at zero superimposed shear ratels50 is subtracted
from the actual measured stress, which leads to subtrac
of hstat from the actual total-correlation function in Eq.~39!.

Applying Parseval’s theorem@see Eq.~8!#, and the defi-
nition ~6! of the structure factor, Eq.~39! can be written as,

H h8~l,V,j21d!

h9~l,V,j21d!
J 5h0

2C8

~j21d!
E dKKn

2K2f ~Kj21d!

3H F in~K ul,V!

Fout~K ul,V!
J , ~40!

whereh0 is the shear viscosity of the solvent,C8 is a posi-
tive constant,d is the diameter of the colloidal particles, an
the functionf is a ‘‘cutoff function,’’ equal to,

f ~x!5@~5x5210x32120x!cosx1~5x4230x2

1120!sinx#/~16x5!2
5

16
xE

x

`

dz
sinz

z
. ~41!

This function is equal to 1 forx50, and is essentially 0 fo
x.4, thus limiting the integration range in Eq.~40! to small
wave vectors, within the range of validity for which expre
sions for the structure factor have been given in the previ
section.

In Ref. @9#, Eq. ~40! is written in terms of the ‘‘relative
structure factor distortion’’ (S2Sstat)/Seq, instead of the
functionsF in,out. The reason for introducing these functio
02140
ro

f
-

ns

e
e

,

he

on

s

here is that they more clearly display the difference betw
parallel and orthogonal superposition. The relative struct
factor distortion is different for both cases, butthe functions
Fin,out are the same for parallel and orthogonal superpo
tion. The only difference between orthogonal and para
superposition is the factorKn

2 in the wave vector integral in
Eq. ~40!.

Since the structure factors are known, these express
can be evaluated explicitly. Integrations must be done
merically.

D. Explicit results for the viscoelastic response functions

Since the functionsF in,out are well-behaved at the critica
point, by construction, and the cutoff functionf (x) tends to
unity whenx→0, the microscopic expression~40! predicts
that the viscoelastic response functions diverge like the c
relation length. This has been verified experimentally in c
of response to a stationary shear flow in Ref.@12#. We there-
fore plot response functions multiplied byj21d, where the
scaling results in a well-behaved function at the critic
point. Furthermore we define the dimensionless respo
functions,

N8~l,V,j21d![
1

C8

h8

h0
~42!

and similarly forN9. The scaled response functions are pl
ted in Fig. 4 against the frequency for various values of
stationary Peclet numberl, and for j21d50.01, both for
parallel and orthogonal superposition. The response fu
tions for the otherwise quiescent system~with l50) is vir-
tually equal to the those withl50.1, and are therefore no
plotted. The storage and loss moduliG85V N9 and G9
5VN8 are plotted in Fig. 5.

As can be seen, the response functions are not affecte
the stationary component of the shear flow for frequenc
V.10l, approximately. Sufficiently fast diffusive mode
are not affected by the stationary shear flow. Only the lo
frequency part of the spectrum is affected on applying
stationary shear flow. At these low frequencies,N8 is essen-
tially constant, which plateau value decreases with incre
ing l. Also, for these low frequenciesN9 is almost 0 in the
case of orthogonal superposition, while for parallel super
sition N9 becomes negative. In the case of orthogonal sup
position, N9 is only slightly negative, almost within the
range of numerical accuracy. As far as we know, the fi
experimental observation of such negative values of respo
functions has been reported for polymer solutions by Lau
et al. @13#.

Notice that the stress can be written as

s~ t !5ġsf ~v!cos$vt2w~v!%, ~43!

where a positive phase anglew implies a time lag of the
stress response relative to the external field;cos$vt%. Using
that, cos$vt2w%5cos$w%cos$vt%1sin$w%sin$vt%, and compar-
ing to Eq.~31! gives,
6-9
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JAN K. G. DHONT AND NORMAN J. WAGNER PHYSICAL REVIEW E63 021406
h8~v!5 f ~v!cos$w~v!%,

h9~v!5 f ~v!sin$w~v!%. ~44!

Hence, a negative value ofN9, which continuously devel-
opes from a zero value at small frequencies, implies that
stress is actually ahead of the externally imposed field. T
is not in contradiction with causality. In fact, the value of t
structure factor in Eq.~23! at a given time depends only o
past times, and is thus a causal solution. That the stres
sponse is ahead of the external field is not in contradic
with causality since at times where transients have died a
the system has experienced many oscillations and there
‘‘knows’’ about what is ‘‘ahead.’’ The future is just an infi
nite repetition of the past. At short times, when the exter
field just became active, there must be a time lag of the st
response, but as soon as transients died away, there is
ing against the stress being ahead of the external field.

It is also clear from Figs. 4 and 5 that for low frequenci
(V,10l, say! the response functions for parallel superp
sition are always smaller than for orthogonal superpositi

FIG. 4. The shear viscosity related to the superimposed s
flow ~scaled with the factorj21d, which in the present case is equ
to 0.01! as a function of the frequency on a logarithmic scale. T
top two figures are for parallel superposition, the bottom two figu
for orthogonal flow.~a! and ~c! show the real partN8 of the shear
viscosity and~b! and~d! its imaginary partN9. The various station-
ary Peclet numbersl are indicated in the figures.
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especially for larger values of the stationary Peclet num
l. The reason for this is as follows. As we have seen in F
2, the structure factor response to the oscillatory shear c
ponent is roughly a factor of 10 smaller for the parallel ca
in comparison to orthogonal superposition. This is caused
the fact that part of the equilibrium microstructure is una
fected by the stationary shear flow: in directions perpendi
lar to the stationary flow the structure factor is equal to
equilibrium structure factor@see Eq.~28! and Fig. 1#. For
parallel superposition the external field just modifies t
shear rate of the stationary flow a bit, and the structure fa
perpendicular to the flow direction remains equal to the eq
librium structure.For parallel superposition, only the micro
structure that is already distorted by the stationary flow
probed. For orthogonal superposition, however, the struct
that is unaffected by the stationary flow will also be affecte
For orthogonal superposition, part of the microstructure th
is probed is the equilibrium microstructure. Since the non-
distorted, equilibrium microstructure is more susceptible
an external field than the already highly distorted microstr
ture, orthogonal response functions are larger than par
response functions. This is the reason why, for example,
storage modulus for parallel superposition goes down w
decreasing frequencies much faster as for orthogonal su
position @see Figs. 5~b! and 5~d!#.

Within the present microscopic approach,the difference
between the viscoelastic response for orthogonal and pa
lel superposition is entirely due to the anisotropy in micr
structural order under stationary shear flow. Our reasoning
is entirely based on the anisotropy of the stationary shea
structure factor. Such an input is completely absent in p
nomenological models for superposition rheology and see
to obscure the connection between the two approaches.

For the near-critical system discussed above, the do
nant effect of the stationary shear flow is to diminish micr
structural order. This may be different in more complicat
systems, like entangled polymers. Here, stationary shear
can induce a considerable amount of new microstructu
This new microstructure does of course respond to the su
imposed oscillatory shear flow and can thus lead to an
crease of the response as compared to the otherwise q
cent system. This might even lead to larger parallel respo
as compared to orthogonal response.

V. ON THE VALIDITY OF THE KRAMERS-KRONIG
RELATIONS

Let us first recapitulate the conditions under which t
Kramers-Kronig relations are valid. Define a response fu
tion f̂ (V), with VPR, as,

f̂ ~V!5E
0

`

dt f ~t! exp$ iVt%. ~45!

The fact that the integration ranges from 0 to` instead of
the entire real axis expresses causality. We impose the
dition,
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FIG. 5. The loss and storag
moduli ~scaled with the factor
j21d, which in the present is
equal to 0.01! as a function of the
frequency on a double-logarithmi
scale. The top figures are for pa
allel superposition, the bottom
two for orthogonal flow.~a! and
~c! show the loss moduli and~b!
and ~d! the storage moduli. The
various stationary Peclet numbe
l are indicated in the figures~for
the two left figures the values ofl
for the various curves are th
same as for the two figures on th
right!.
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0

`

dt tu f ~t!u,`, ~46!

on f (t). It would be physically unrealistic whenf (t) would
be singular for some finite-timet. The possible divergenc
of the above integral can therefore only be due to a too s
decay ofu f (t)u to 0 ast→`. This condition thus implies
that,

E
0

`

dtu f ~t!u,`. ~47!

The two above conditions~46! and ~47! imply that f̂ (V) is
continuous differentiable on the real axis, and allow to co
tinue this function analytically into the upper half of th
complex plane. This analytic continuation is obtained by
placingV in Eq. ~45! by the variablez5x1 iy with x andy
both real, whiley>0 in the upper half of the complex plane
We simply denote this analytic continuation asf̂ (z). Let
C1(R)5$zuz5R exp$iw%,wP@0,p#% denote the semicircle
with radiusR in the upper half plane. Wheneverf̂ (z) van-
ishes on the semicircle when the radius tends to infinity, t
is, when,

lim
R→`

max
wP[0,p]

u f̂ ~z5R exp$ iw%!u50, ~48!

the integral off̂ (z)/(z2V) with respect toz over the curve
C1(R) tends to 0 whenR→`. The Kramers-Kroning rela-
tions now follow directly from Cauchy’s integral theorem
The Eqs.~46!–~48! are thus sufficient conditions for the va
02140
w
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lidity of the Kramers-Kronig relations for the real and imag
nary parts of the functionf̂ defined in Eq.~45!. In fact,
assuming continuity off (t), the inequality~46! implies the
inequality ~47!, so that the actual conditions to be satisfi
are Eq.~46! and ~48!.

For the colloidal system under consideration here,
have from Eqs.~30! and ~40!,

h~V!5h8~V!1 ih9~V!5E
0

`

dt f ~t!exp$ iVt%, ~49!

where,

f ~t!5h0

2C8~j21d!

l E dK
Kn

2K2

K1
f ~Kj21d!

3G2~t!@11G2~t!#$Sstat
„G~t!…2Seq

„G~t!…%

3exp$2H~t!%. ~50!

Let us analyze whether the two conditions~46! and~48! are
satisfied for the present case.

Consider first the condition~46!, which is a condition on
the long-time behavior off (t); this function should decay to
zero at infinity sufficiently fast to guarantee the existence
the integral. The long-time behavior off (t) relates to the
small frequency behavior off̂ (V)[h(V). Now suppose
that the effect of the stationary shear is to diminish the m
crostructure, that is, the structure factor under station
shear is smaller than the equilibrium structure factor for
wave vectors. In that case the response functions to a su
imposed flow at low frequencies are smaller than the
6-11
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JAN K. G. DHONT AND NORMAN J. WAGNER PHYSICAL REVIEW E63 021406
sponse functions of the otherwise quiescent system; pa
the microstructure that could have responded is now
stroyed by the stationary shear flow, or equivalently, str
ture that would have responded in the absence of statio
shear flow is no longer available for superimposed respo
In that case the response functionu f (t)u cannot be larger
than for the otherwise quiescent system. This implies that
condition ~46! is satisfied for the superimposed respon
functions whenever it is satisfied for the otherwise quiesc
system.

Furthermore, the response functionh(V) will not be af-
fected by the stationary shear flow for sufficiently large f
quencies of the superimposed flow, since sufficiently f
dynamical modes are able to instantaneously follow the
ternal field. In fact, as we have seen in Sec. IV D~see in
particular Figs. 4 and 5!, the viscosity is not affected fo
frequencies larger than about 10l. Hence, when the condi
tion ~48! for f̂ (z)[h(z) is satisfied without stationary shea
flow, they are also satisfied in the presence of a station
shear flow.

The conclusion from the above reasoning is, that when
Kramers-Kronig relations hold for the usual frequency d
pendent viscosity where no stationary shear field is appl
they also hold for the viscosity related to a superimpo
oscillatory flow.

The crucial assumption that was made to arrive at
validity of the Kramers-Kronig relations, was that the stru
ture factor is diminished by the stationary flow for all wa
vectors. Even for the near-critical system considered h
this is not entirely true. Along the compressional direction
the shear flow there is an increase of the structure factor.
breakdown of structure is however much more dominant
that the arguments given above remain valid. There are
tems, however, for which there is a considerable enhan
ment of structure due to the stationary shear flow, such
entangled polymer systems and colloidal systems close
gel line. It might be that for such systems the Krame
Kronig relations are violated.

VI. REMARKS AND CONCLUSION

In the present microscopic approach the difference
tween parallel and orthogonal response functions can be
derstood entirely on the basis of the anisotropic microstr
ture under stationary shear flow. Particularly important is
fact that the stationary flow does not affect the microstr
ture in directions perpendicular to the flow direction. In the
directions the structure factor remains the same as in e
librium @see Fig. 1 and Eq.~28!#. Under a parallel superim
posed flow, the structure factor retains its equilibrium fo
in directions perpendicular to the flow, and only modifies t
distortion that is already caused by the stationary flow. T
still existing equilibrium structure that is present under s
tionary flow will be probed, however, by an orthoganol s
perimposed flow field. Hence,parallel superposition probes
nonequilibirum structure only while orthogonal superpo
tion probes also in part, equilibrium structure.

A generally valid statement is thatthe difference betwee
the response to parallel and orthogonal superposition is d
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to the fact that the stationary sheared microstructure is a
isotropic, and the two superposition experiments probe
ferent parts of this anisotropic structure. The parallel super-
position response functions will generally be larger than
orthogonal ones, since parallel superposition probes alre
highly distorted microstructure~by the stationary flow!,
while othogonal superposition probes microstructure tha
distorted to a lesser extent.

For the systems discussed here, superimposed resp
functions are found to be smaller than the response funct
for the otherwise quiescent system, where stationary sh
flow is absent. This is due to the fact that the breakdown
microstructural order is dominant over shear induced ord
For more complicated systems, like entangled polymer so
tions or systems close to the gel transition line, station
shear flow may induce a considerable amount of new st
ture. This new microstructure, that does not exist witho
stationary shear flow, can lead to an enhancement of
response functions; new microstructure is created that
respond to the superimposed flow. In such cases supe
posed response functions can be larger for sufficiently sm
frequencies as compared to the response functions for
otherwise quiescent system.

The Kramers-Kronig relations hold when the breakdow
of microstructure due to the stationary flow is dominant ov
the stationary shear enhancement of microstructure. In such
cases the inequality~46! is satisfied, which ensures the va
lidity of the Kramers-Kronig relations. There are a number
phenomelogical models that do not satisfy the Krame
Kroning relations. This does not mean that these phen
enological models are inaccurate; it can very well be that
least within some frequency range, these models give a
rate estimates for response functions. However, it would
reassuring when a phenomenological model does satisfy
Kramers-Kronig relations. A purist might say that such mo
els that violate the Kramers-Kronig relations are ‘‘fundame
tally wrong,’’ while a practionist might say that they ar
‘‘quite accurate in the experimentally accessible frequen
range.’’ The Kramers-Kronig relations could be violated fo
systems where the stationary shear flow induces a consi
able amount of new structure, like entangled polymers
systems close to the gel transition line.

One of the important points here has been that the st
ture factor is not affected by shear flow in directions perp
dicular to the flow direction@see Eq.~28!#. An exact numeri-
cal treatment of the two-particle Smoluchowski equation
hard spheres@14# shows that the distortion along these dire
tions is nonzero. This is due to nonlinear terms in the eq
tion of motion for the total-correlation function and to th
no-flux condition at contact of two particles. For the prese
case of colloids near their gas-liquid critical point, howev
the situation is quite different: linearization is allowed in th
mean-field region, while the no-flux condition plays no ro
here, since the asymptotic behavior of the total-correlat
function for large distances is calculated. Indeed it has b
shown experimentally@15# that there is no distortion of the
structure factor in directions perpendicular to the flow dire
tion, except very close to the critical point, beyond the me
field region.
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